Responses of developing pedunculopontine neurons to glutamate receptor agonists.
نویسندگان
چکیده
The pedunculopontine nucleus (PPN) is involved in the generation and maintenance of waking and rapid eye movement (REM) sleep, forming part of the reticular activating system. The PPN receives glutamatergic afferents from other mesopontine nuclei, and glutamatergic input is believed to be involved in the generation of arousal states. We tested the hypothesis that, from postnatal days 9 to 17 in the rat, there are developmental changes in the glutamate receptor subtypes that contribute to the responses of PPN neurons. Whole cell patch-clamp recordings were conducted using brainstem slices from 9- to 17-day-old rats. All cells (types I, II, and III; randomly selected or thalamic-projecting) responded to bath application of the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA) and kainic acid (KA). A developmental decrease in the contribution of the NMDA receptor and developmental increase in the contribution of the KA receptor was observed following electrical stimulation-induced glutamate input. These changes were also observed following bath application in different cell types (randomly selected vs. thalamic-projecting). KA bath application produced an increase in the paired-pulse ratio (PPR) and a decrease in the frequency of miniature excitatory postsynaptic currents (mEPSCs), suggesting that presynaptic KA autoreceptors may decrease the probability of synaptic glutamate input. In contrast, NMDA application produced no changes in the PPR or mEPSCs. Changes in glutamatergic excitability of PPN cell types could underlie the developmental decrease in REM sleep.
منابع مشابه
Responses of Developing Pedunculopontine Neurons to Glutamate Receptor Agonists 1
27 The pedunculopontine nucleus (PPN) is involved in the generation and maintenance of 28 waking and rapid eye movement (REM) sleep, forming part of the reticular activating system. 29 The PPN receives glutamatergic afferents from other mesopontine nuclei and glutamatergic 30 input is believed to be involved in the generation of arousal states. We tested the hypothesis 31 that, from postnatal d...
متن کاملEvaluation of nicotinic receptor of pedunculopontine tegmental nucleus in central cardiovascular regulation in anesthetized rat
Objective(s): Cholinergic neurons are important neurons in the Pedunculopontine tegmental nucleus (PPT). In this study, nicotinic receptor of the PPT in central cardiovascular regulation in the anesthetized rat was evaluated. Materials and Methods: Saline, acetylcholine (Ach; doses: 90 and 150 nmol), hexamethonium (Hexa; doses: 100 and 300 nmol) and higher doses of Hexa (300 nmol) + Ach (150 nm...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملPostnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration
Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...
متن کاملEffects of pedunculopontine nucleus (PPN) stimulation on caudal pontine reticular formation (PnC) neurons in vitro.
Stimulation of the pedunculopontine nucleus (PPN) is known to induce changes in arousal and postural/locomotor states. Previously, PPN stimulation was reported to induce prolonged responses (PRs) in extracellularly recorded PnC neurons in the decerebrate cat. The present study used intracellular recordings in semihorizontal slices from rat brain stem (postnatal days 12-21) to determine response...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2011